Real Time Ada Compilers for the
68020

L. Asplund, M. Carlsson, D. Wengelin and G. Bray.
University of Uppsala

Abstract

Three cross compllers hosted on a VAXIVMS for the Motorola 68020 processor have
been evaluated. The target machine, a VME system with a MVME133 processor card
and a MVME340 digital I0-card, has been set up in an environment with a function
generator and an oscilloscope in order to measure the real time response. The
compilers supply the run time kernel. It is possible to use Ada for real time applications,
with the use of optimization of accept statements task switch times can come down to
the order of 15 — 20 us .

Introduction

Ada has evolved drastically the last years. Soon after the language became an ANSI
standard, only a few compilers were available and they could only be used to compile
various simple programs. Many enthusiasts started out with nested generic packages
and task types, only to find that the validated compilers were valid only for the test
suite. The situation for the users of the first compilers was to spend a lot of time
finding out where and why the compiler failed, either at compile or at run time.

The next step in the evolution came with what can be called production compilers for
numeric and data handling programs. These compilers could replace most of the
existing Pascal and FORTRAN compilers. Tasking could be used for moderate time
critical applications. Still the target machines were the same as the host, such as the
VAX. Several users and companies could now start to learn the language and start to
develop toois.

At that time Ada could replace most other languages for many applications. The
language was primarily designed for real time applications and especially for
embedded systems. The latest development in Ada compilers are cross compilers for
quite powerful microcomputers like the Motorola 680X0-family, Intel 80X86 and
National 32X32. Hopefully there will be compilers for smaller micros in the future.

In a project, aiming at distributing Ada software to a loosely coupled multi computer
system, three independent VME systems, with cpu, memory and Ethernet port, will be
used/1/. The whole system will be programmed in Ada and it is therefore essential to
choose a cpu-board and a compiler that supports low level programming and allows
an efficient mapping of hardware interrupts.

Real Time Ada Compilers for the 68020 2 (12)

Cross compilers

The three cross compilers that have been tested are the Alsycomp_011 from Alsys/2/,
the System Designers Ada—Plus version 3A.00 /3/ and TeleGen2 /4/ from
Telesoft/TeleLOGIC. Cross compilers from VAX/VMS to Motorola 68000 not tested
here are available from Rational and Tartan.

Software tools and development support

The environment support is good enough for program development. There are,
however, problems when the hardware and software do not match. If spurious
interrupts occur, the system may hang, making it impossible to restart the program or
even get to the kernel. The kernel was downloaded into the target prior to the loading
of the compiled and linked code. There is, of course, the possibility to use EPROMs
for the kernel. During this evaluation, it was most convenient to download the kernel.

The environment is essential when developing programs on one computer to be run on
a separate target. However, the tests described in this article did not require any

debugging.
Hardware configuration

Fig 1 shows the hardware setup for the test of the Alsys and the SD compilers. A

Power supply

VME backplane P1 connectors

M M

\ \'%

M M

E E

1 3

3 4

3 0 P2 Exp board

w T
Pulse generator
Oscilloscope

Fig 1

VME-crate (Electronic Solutions, Series 10) with 12 slots and a backplane for P1 only,
with a MVME133-1 processor card. This board includes a MC68020 cpu with 16.67MHz
clock frequency and one wait state. The board also comprises a real time clock,
1Mbyte of onboard memory and two serial ports. In two of the ROM-sockets a simple
debugger is installed (133-BUG). With this debugger, a kernel can be loaded via a

Real Time Ada Compilers for the 68020 3 (12)

serial link. This link is then used to download the compiled and linked code. For the
tests with the Telegen2 compiler a MVME135-1 card was used running at 20MHz with
zero wait states. All times are given as measured, but these times can be increased
by a factor of 25% to compensated for the difference in clock frequency, but this
would then be an overestimate due to the VME-timings. The MVME133 card was first
rented and two of the compilers tested. The tests with the TeleGen2 compiler was
performed after the other two, using the MVME135-1 board.

In these tests an external interrupt source was a pulse generator, which was
connected via a board to an |0-card, MVME340.

The MVME340 board has three independent IO circuits, PI/Ts (Parallel Interface and
Timer chip, MC68230), and circuits for interrupts. The memory layout for each of the
three PI/Ts is shown in fig 2. Observe that all registers are 8 bit wide and the offset

[CountBeglow |

[CB_Cantrol |
[_A Control 1

Fig 2
for these are at multiples of 2. The first of the three starts at the base of the
MVME340A. The second starts at an offset of 1 from the base address. These two
first are interleaved. The third starts with an offset 16#81#. Observe that this PIT is
not interleaved with a fourth PI/T leaving the memory locations between these

Real Time Ada Compilers for the 68020 4 (12)

registers empty. Fig 3 shows the memory layout for the three different Pi/Ts.

Apart from these three circuits, the MVME340 card has three general registers
controlling the board. One of these registers defines the interrupt priority of the card
and controls a light emitting diode at the front. This LED is used in all the different
tests. It can be accessed both from assembler and Ada.

Software description of hardware

—— DT

Fig 3
Fig 3 shows the hardware map of the various registers in the MVME340. The Ada code
below show the specification of one of the PI/Ts. With a representation specification
the mapping can be made to correspond to the hardware as shown in fig 4. Observe
that there are three different 8 bit wide registers (A, B, and C) and that it would have
been better if the hardware had been made in such a modular way that these three
could have been represented by:

Type Data_Register is record
Direction,
Control,
Data,
Alternate : Byte;
end record;

It would then have been possible to specify the three PI/Ts in terms of these, but
unfortunately the hardware layout of register C differs from register A and B.

The compilers handle the type Byte in different ways. For the SD compiler it was
possible to directly use

Real Time Ada Compilers for the 68020 5 (12)

Type Byte is range 0..255;
For Byte’size use 8;

This gave an eight bit variable. For Alsys there was no way of defining the size. The
workaround was to use a predefined type Short_Integer.

In one of the routines, bit seven should be set and for clarity (in the absence of bit
specification) the following code should be used:

Some_Variable : Byte;
begin
Some_Variable := 2#1000_0000#;

but for Alsys the work around is
Some_Variable := -128;

The TeleGen2 has no type like Short_Integer and the representation specification for
'size could not be used. In order to access only one byte on the card and not sixteen
bits, which will cause a bus error due to the upper eight bits not being available, the
following specification were necessary:

type Byte is range 0..255;
type Byte_Record is record
Data : Byte;
end record;
For Byte_Record use record;
Data at O range 0..7;
end record;
Some_Variable : Byte_Record;
begin
Some_Variable.Data := 2#1000_0000#;

The specification of the records defining the PI/T was, for all three compilers, written
as in fig 4.

Type PIT_Record is record
General_Control,
Service_Request,

Data_Direction_A, Data_Direction_B, Data_Direction_C,
Interrupt_Status,

Control_A, Control_B,

Data_A, Data_B,

Alternate_A, Alternate_B,

Data_C,

Status,

Timer_Control,
Timer_Interrupt,
Counter_Preload_3, Counter_Preload_2, Counter_Preload_1,
Count_3, Count_2, Count_t,
Timer_Status :
:Byte;
end record;
Fig 4 record type describing a single PI/T chip. Compare fig 2.

Real Time Ada Compilers for the 68020 6 (12)

The components of the record are located at every second byte. The record
specification in fig 5 is used.

for PIT_Record use record at mod 8;
General_Control at 16#00# range O..
Service_Request at 16#02# range O..
Data_Direction_A at 16#04# range O..
Data_Direction_B at 16#06# range O..
Data_Direction_C at 16#08# range O..

Interrupt_Status at 16#0A# range 0..7;
Control_A at 16#0C# range 0..7;
Control_B at 16#0E# range 0..7;
Data_A at 16#10# range 0..7;
Data_B at 16#12# range 0..7;
Alternate_A at 16#14# range 0..7;
Alternate_B at 16#16# range O..

Data_C at 16#18# range 0..7;
Status at 16#1A# range 0..7;
Timer_Control at 16#20# range 0..7;
Timer_Interrupt at 16#22# range 0..7;

Counter_Preload_3 at 16#26# range O..
Counter_Preload_2 at 16#28# range 0..
Counter_Preload_1 at 16#2A# range O..

NNNNNNNNNNNNNNNNNNNNNNY

Count_3 at 16#2E# range 0..7;

Count_2 at 16#30# range 0..7;

Count_1 at 16#32# range 0..7;

Timer_Status at 16#34# range 0..7;
end record;

Fig 5 representation specification of the record in fig 4.

The three individual PI/Ts were declared in the following way for the three different
compilers.

Alsys:
PIT1 : PIT_Record; for PIT1 use at To_Address (16#200_000#);
PIT2 : PIT_Record; for PIT2 use at To_Address (16#200_001#);
PIT3 : PIT_Record; for PIT3 use at To_Address (16#200_041#);

SD:

PIT1 : PIT_Record; for PIT1 use at Convert_Address (”200000");
PIT2 : PIT_Record; for PIT2 use at Convert_Address (”200001”);
PIT3 : PIT_Record; for PIT3 use at Convert_Address (”200041");

TeleGen2:

PIT1 : PIT_Record; for PIT1 use at Addr (16#200_000#);
PIT2 : PIT_Record; for PIT2 use at Addr (16#200_001#);
PIT3 : PIT_Record; for PIT3 use at Addr (16#200_041#);

package MVME340 is
procedure SEQ;
procedure REQ;
procedure int_Enable;
procedure Int_Disable;
procedure Reset_Interrupt;

end MVME340;
Fig 6. Package specification for 10-board.

In a package, MVME340, the board is described using these record definitions. Some
of he visible routines are shown in fig 6. There are routines to enable and disable the

Real Time Ada Compilers for the 63020 7 (12)

interrupt. The previously mentioned LED can be accessed using the routines SEQ and
REQ to set and reset it respectively.

Programs

The programs used to evaluate the compilers are short and can therefore be included
in this report. The most important thing to measure is the latency time for interrupts.
This has been measured in two different ways.

Ada is very heavily standardized. The Language Reference Manual (LRM) /5/ gives
small opportunities to depart from the standard. Chapter 13 is devoted to
implementation dependent features and representation specifications. Here we now
have three different compilers with identical host and target and no two of them handle
addresses in the same way. The type address given in package system is for all
declared as private. For SD a routine Convert_Address is supplied. This function takes
as argument a string, which has to be a sequence of hexadecimal numbers, not a
based integer literal as defined in Ada. The corresponding function for Alsys is the
function To_Address which as its argument requires a Long_Integer. The TeleGen2 can
convert from Long_lnteger via the procedure Addr.

The Alsys compiler maps a task entry to an interrupt source by a call to the run time
system. The following code is used:

specification:
entry INTERRUPT;

body:
INTERRUPT_HANDLER.INIT (SYSTEM.TO_ADDRESS(16#1 00#));
accept INTERRUPT do

if several entries are valid for the task, the mapping is to the first entry only. The first-
part of the interrupt code has to be written in assembler. In the assembler code, the
interrupt has to be cleared. Then with a call to the run time system a rendezvous is
made with the task.

The SD compiler declares the interrupt according to chapter 13 in LRM. An entry in a
table that describes all interrupt vectors had to be modified. This table is written in
assembler.

specification:
entry INTERRUPT;
for Interrupt use at system.Convert_Address(”100"};

The TeleGen2 compiler from TeleLOGIC has a package called Interrupt where a private
type, Descriptor, is declared. An object of this type can be initialized by a call to the
function Source, where the hardware interrupt vector is defined as a parameter. The
mapping of the task entry is done to the variable of type Descriptor. No assembler
programming was necessary.

Real Time Ada Compilers for the 68020 8 (12)

MVME340_Device : Interrupt.Descriptor := Interrupt.Source (Addr (16#100#));

entry INTERRUPT,;
for INTERRUPT use at MVME340_Device’Address;

The first program given in fig 7 incorporates a select statement but only with an or
terminate alternative. A task, that shall handle interrupts, is, in a data acquisition
program, responsible for reading in external data when an interrupt occurs. Such a
task needs, besides the interrupt entry, others entries to obtain information data that
has been read in. The way to solve this is by the use of a select statement.

with MVME340, SYSTEM, INTERRUPT_HANDLER;
procedure Int_Entry is
task HANDLER is
pragma PRIORITY(10);
entry INTERRUPT;
for Interrupt use at compiler specific.
end HANDLER; -
task body HANDLER is
begin
loop
select
accept INTERRUPT do
MVME340.SEQ;
MVME340.Reset_Interrupt;
end Interrupt;
MVME340.REQ;
or
terminate;
end select;
end loop;
end HANDLER;
begin
MVME340.Int_Enable;
delay 60.0;
MVME340.int_Disable;
end Int_Entry ;

Fig 7.

The code shown in fig 7 is the code used, with minor modifications for the three
compilers. The entry Handler.Interrupt is, by the different techniques given by the
compilers, defined to handle the hardware interrupt from an external source. When
such an interrupt occurs, the do part of the accept will set the LED on the front panel,
reset the interrupt (by reading a register on the board), and then reset the LED. The
Aisys compiler did the reset of the interrupt in assembler. On the oscilloscope the time
is measured from the negative edge of the pulse to the LED being turned on.

Since the select statement takes some time to handle, another test was made. This
test measures the time to enter a task, reset the interrupt request, and return. The
code is shown in fig 8. The accept statement for Alsys does no require any do part,
as the interrupt is cleared in assembier.

Real Time Ada Compilers for the 68020 9 (12)

with MVME340, SYSTEM, INTERRUPT_HANDLER;
procedure Int_Task is
task HANDLER is
pragma PRIORITY(10);
entry INTERRUPT;
for Interrupt use at compiler specific.
end HANDLER;
task body HANDLER is
begin
loop
Alsys:
accept INTERRUPT;
SD:
accept Interrupt do
MVME340.Reset_Interrupt;
end Interrupt;
end loop;
end HANDLER;

begin
MVME340.Int_Enable;
loop .
MVME340.SEQ;
“MVME340.REQ;
end loop;
MVME340.int_Disable;
end Int_Task ;

Fig 8

The procedures in fig 7 and 8 measure the time for interrupts. These involve task
switches that are tested separately in the procedure shown in fig 9. With an intervai of
0.01 seconds, all the chained tasks are called. The activity is measured with an
oscilloscope. After 100 of these chains another task is added. This program was used
with all compilers without rewriting. Two of the compilers (SD and Alsys) gave a
warning message, that the construction could lead to a task calling itself.

with MVME340;
procedure RendezV is
type Mail;
type Mail_Pointer is access Mail;
task type Mail is
entry Init (Next : Mail_Pointer);
entry Request;
end Mail;
Root : Mail_Pointer;
task body Mail is
My_Next : Mail_Pointer;
begin
accept Init (Next : Mail_Pointer) do
My _Next := Next;
end Init;
loop
select
accept Request;
MVME340.SEQ;
MVME340.REQ;
if My_Next /= Null then
My_Next.Request;
end if;
or
terminate;
end select;

Real Time Ada Compilers for the 68020 10 (12)

end loop;
end Mail;
begin
loop
declare
Temp : Mail_Pointer := new Mail;
begin
Temp.Init (Root);
Root := Temp;
end;
for i in 1..100 loop
delay 0.01;
Root.Request;
end loop; .
end loop;

end RendezV;

Fig 9. Procedure to measure simple rendezvous times.

In the project where one of these compilers will be used, heavy numerical calculations
will be performed. The following two procedures measure the speed of floating point
operations. The first test procedure used a simple Taylor expansion of sine. The
second procedure makes use sine from a math—-package, available in the Alsys and
TeleGen2 compilers.

Function SIN (Arg : Float) Return Float;

With MVME340;
With Sin;
Procedure Cosine is
Level : Float := 0.00;
Step : Float := 0.01;
begin
loop
For Omega in 0..627 loop
If Sin(Float(Omega)/100.0) > Level then
Level := Level + Step;
MVME340.SEQ;
else
Level := Level - Step;
MVMES340.REQ;
end if;
end loop;
end loop;
end Cosine;

Fig 10. Code for evaluating floating point performance

Results

All measurements are performed with an oscilloscope, which is connected to the LED
at the front. The time to switch this LED on and off are 0.8 us in assembler. In fig 8
the main program is an endless loop where the LED is switched on and off. The times
to Set or Reset the LED and handle the loop is

Compiler SEQ/REQ loop
Alsys 4 us 1.5 us
System Designer 12 us 3 ps

10

Real Time Ada Compilers for the 68020 11 (12)

TeleGen2 4.5 us : 1.5 ps

The programs listed in figs 7 and 8 were used to measure the response times for
interrupts. In the setup shown in fig 1, a pulse generator is applied to the MVME340
and and oscilloscope to the LED at the front of the card. In this way, it is possible to
come close to a realistic use.

The interrupts of the MVME340 have to be reset by a reading one of the data registers
on the board. For the Alsys compiler this read operation has to be done in an
assembler routine before entering the Ada runtime. The time taken to enter the select
statement in fig 7 is

Alsys 310 ps
System Designer 132 pus
TeleGen2 18 ps

The TeleGen2 gives the value 18 us when the Pragma Function_Mapping is used,
which restricts the code within the do part from making a rendezvous with other tasks
or access dynamic variables (those on the stack).

The program in fig 7 contains an accept statement with an or terminate alternative.
These take more time than a pure accept statement. In order to test the latency for
such a construct, the procedure in fig 8 is used. The total time spent in the task is

Alsys 240 us
System Designer 380 ps
TeleGen?2 28 ps (with Pragma Function_Mapping)
TeleGen2 . 225 ps

This test now shows the fastest way of context switching when hardware interrupts are
involved. The program with no other entries has limited practical use.

The procedure given in fig-9 measure the time to do a regular rendezvous with no
argument. The time between successive rendezvous is

Alsys 200 ps
System Designer 170 us
TeleGen?2 125 ps

The number of task that could run in was different for the various compilers, but no
optimization was done to increase the number. -

The program in figs 10 tests the floating point performance. With the Alsys and
TeleGen2 compilers, a predefined math package is supplied. A second test was made
where this package was used. For the SD compiler only the procedure utilizing the
Taylor expansion of sine was used. The effect of the programs will be a cosine
function over the LED. The frequency of the intensity function was measured.

In the case of Alsys there is a choice of using the hardware coprocessor 68881 or to

11

Real Time Ada Compilers for the 68020 12 (12)

do the arithmetic in software. The period times of the cosine are given in table 11.

Function sine Function Math.sine
Alsys with HW float 235 ms 315 ms
Alsys with SW float 330 ms 480 ms
System Designers 192 ms Not applicable
TeleGen2 110 ms 54 ms
Fig 11
Future

The results from these tests form a basis for the next step in the project. One of the
compilers will be purchased and the results from distributing Ada on a Vax running
VMS will now be implemented on three separated VME-systems. The distribution
methods are to be implemented on a missile and guidance control software system,
The problem with many Ada Run time designers is probably that they regard even
interrupt routines to be handled of this run time system. For time critical interrupt
handlers there are no time more than to read ore write data to external. hardware.

Acknowledgments

This study has been made possible by FOA, as part of a study of multi~processor
systems. Thanks are given to Joseph Nordgren for allowing the extended use of the
hardware.

Thanks also to Olle Hansson at TeleLOGIC for the support end help, to Magnus
Eriksson and Orjan Lehringe at MariaData (Alsys) for making the compiler available as
a loan and for their assistance.

References

Distributed Ada Run-Time System, M. Carlsson et al. Draft.
Reference Manual for the Alsys compiler Alsy_Comp_011
Reference Manual for System Designers compiler Ada-Plus
Reference Manual for the TeleGen2 compiler

Ada Language Reference Manual

OObhownN =

12

